
Applying Formal Methods to a
Certifiably Secure Software System

Constance L. Heitmeyer, Member, IEEE, Myla M. Archer, Member, IEEE Computer Society,

Elizabeth I. Leonard, Member, IEEE Computer Society, and John D. McLean

Abstract—A major problem in verifying the security of code is that the code’s large size makes it much too costly to verify in its

entirety. This paper describes a novel and practical approach to verifying the security of code which substantially reduces the cost of

verification. In this approach, a compact security model containing only information needed to reason about the security properties of

interest is constructed and the security properties are represented formally in terms of the model. To reduce the cost of verification, the

code to be verified is partitioned into three categories and only the first category, which is less than 10 percent of the code in our

application, requires formal verification. The proof of the other two categories is relatively trivial. Our approach was developed to

support a Common Criteria evaluation of the separation kernel of an embedded software system. This paper describes 1) our

techniques and theory for verifying the kernel code and 2) the artifacts produced, that is, a Top-Level Specification (TLS), a formal

statement of the security property, a mechanized proof that the TLS satisfies the property, the partitioning of the code, and a

demonstration that the code conforms to the TLS. This paper also presents the formal basis for the argument that the kernel code

conforms to the TLS and consequently satisfies the security property.

Index Terms—Security, verification, specification, security kernels, tools, formal methods, software, software verification.

Ç

1 INTRODUCTION

Acritical objective of many military systems is to protect
the confidentiality and integrity of sensitive informa-

tion. Preventing unauthorized disclosure and modification
of sensitive information is of enormous importance in
military systems since violations can jeopardize national
security. Compelling evidence that military systems satisfy
their security requirements is therefore required. A promis-
ing approach to demonstrating the security of code is
formal verification, which has been successfully applied to
algorithms such as floating-point division [1] and clock
synchronization [2] and security protocols such as crypto-
graphic protocols [3], [4]. However, most previous efforts to
verify security-critical software have been extremely ex-
pensive. One reason is that these efforts often built security
models containing too much detail (see, for example, [5]) or
tried to prove too many properties (see, for example, [6]).
The result was that model building and property proving
were prohibitively expensive.

A challenging problem therefore is how to make the
verification of security-critical code affordable. This paper
describes a novel and practical approach to verifying the
security of software that significantly reduces the cost of
verification. This approach was formulated to support a
Common Criteria evaluation of the security of a software-
based embedded device called ED (Embedded Device).
Satisfying the Common Criteria required a formal proof of

correspondence between a formal specification of ED’s
security functions and its required security properties and a
demonstration that ED’s implementation satisfied the
formal specification. ED, which processes data stored in
different partitions of its memory, must enforce a critical
security property called data separation to ensure, for
example, that data in one memory partition neither
influences nor is influenced by data in another partition.
To guarantee that data separation is not violated (or, if it is
violated, an exception occurs), ED relies on a separation
kernel [7], a tamper-proof nonbypassable program mediat-
ing every access to memory.

The task of our group was to provide evidence to the
certifying authority that the ED separation kernel enforces
data separation. The kernel code, which contains on the order
of 3,000 lines of C and assembly code, was annotated with
preconditions and postconditions in the style of Hoare and
Floyd. To provide evidence that ED enforces data separation,
we produced a Top-Level Specification (TLS) of the separa-
tion-relevant behavior of the kernel, a formal statement of
data separation, and a mechanized formal proof that the TLS
satisfies data separation. Then, the annotated code was
partitioned into three categories, each requiring a different
proof strategy. Finally, the formal correspondence between
the annotated code and the TLS was established. Five
artifacts—the TLS, the formal statement of data separation,
proofs that the TLS satisfies data separation, the organization
of the annotated code into the three categories, and the
documents showing correspondence of the code to the TLS—
were presented, along with the annotated code, as evidence
supporting the certification of ED.

This paper summarizes the process that we followed in
producing evidence for the Common Criteria evaluation,
describes the artifacts developed during the process, and
presents the formal argument justifying our approach to

82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

. The authors are with the Information Technology Division, Naval Research
Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375.
E-mail: {heitmeyer, archer, leonard, mclean}@itd.nrl.navy.mil.

Manuscript received 24 Feb. 2007; revised 8 Aug. 2007; accepted 29 Aug.
2007; published online 27 Nov. 2007.
Recommended for acceptance by P. McDaniel and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0083-0207.
Digital Object Identifier no. 10.1109/TSE.2007.70772.

U.S. Government Work Not Protected by U.S. Copyright

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Applying Formal Methods to a Certifiably Secure Software System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Information Technology Division,4555
Overlook Avenue SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A major problem in verifying the security of code is that the code’s large size makes it much too costly to
verify in its entirety. This paper describes a novel and practical approach to verifying the security of code
which substantially reduces the cost of verification. In this approach, a compact security model containing
only information needed to reason about the security properties of interest is constructed and the security
properties are represented formally in terms of the model. To reduce the cost of verification, the code to be
verified is partitioned into three categories and only the first category, which is less than 10 percent of the
code in our application, requires formal verification. The proof of the other two categories is relatively
trivial. Our approach was developed to support a Common Criteria evaluation of the separation kernel of
an embedded software system. This paper describes 1) our techniques and theory for verifying the kernel
code and 2) the artifacts produced, that is, a Top-Level Specification (TLS), a formal statement of the
security property, a mechanized proof that the TLS satisfies the property, the partitioning of the code, and
a demonstration that the code conforms to the TLS. This paper also presents the formal basis for the
argument that the kernel code conforms to the TLS and consequently satisfies the security property.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

establishing conformance of the code with the TLS. The
paper makes two major contributions. First, it describes a
novel technique for partitioning the code into three different
categories and for reasoning about the security of each
category. This technique dramatically reduces the cost of
verification (see Section 3.4). Second, it describes an original
and practical method for demonstrating the security of
code. Although the method combines a number of well-
known techniques for specifying and reasoning about
security (for example, a state machine model, an access
control matrix [8], mechanized reasoning using PVS [9], and a
demonstration of correspondence between the TLS and the
annotated code), which techniques should be applied, how
they can be applied, and how they can be combined were far
from obvious and required significant discussion during the
course of the project. Along the way, many alternative
approaches and techniques were considered and several
were discarded. What is notable about our effort is that,
unlike many other efforts applying formal methods, ours was
not a case study but a successful application of our formal
techniques in the certification of a real-world system. Both
our technique for partitioning the code and our method for
proving the security of the code should prove cost-effective in
future efforts to verify the security of software.

This article is organized as follows: Section 2 reviews the
notion of a separation kernel, summarizes the requirements
of a Common Criteria evaluation, and presents some details
of ED. Section 3 describes the process that we followed to
demonstrate data separation and describes the five artifacts
that the process produced, including the three categories of
code and the demonstration that each category of code is
secure. Section 4 adapts the classical theory of refinement
[10] to the proof that a concrete state machine model
conforms to an abstract state machine model, thus provid-
ing a formal basis for proving the security of the kernel.
Section 5 discusses the general class of security properties to
which our techniques apply, that is, the class of properties
that are preserved under refinement. It has been shown that
safety properties belong to this class of properties [10].
Section 5 also discusses how our approach could be used to
prove additional properties of the kernel. Sections 6 and 7
describe some lessons learned and four topics requiring
more research, for example, the need for more powerful tool
support. Section 8 discusses related work. Finally, Section 9
presents some conclusions.

2 BACKGROUND

2.1 SEPARATION KERNEL

A separation kernel [7] mimics the separation of a system into a
set of independent virtual machines by dividing the memory
into partitions and restricting the information flow between
those partitions. Separation kernels are being developed by
commercial companies such as Wind River Systems, Green
Hills Software, and LynuxWorks for military applications
requiring Multiple Independent Levels of Security (MILS)
[11]. In a MILS environment, a separation kernel acts as a
reference monitor [12]: It is nonbypassable, evaluatable,
always invoked, and tamper-proof.

2.2 Common Criteria

A number of international organizations established the

Common Criteria to provide a single basis for evaluating

the security of information technology products [13].

Associated with the Common Criteria are seven Evaluation

Assurance Levels. EAL7, the highest assurance level,

requires a formal specification of a product’s security

functions and its security model and formal proof of

correspondence between the two.

2.3 Embedded Device

The device of interest, ED, processes data in an embedded

system whose memory has been divided into nonoverlap-

ping partitions. Although, at any given time, the data stored

and processed by ED in one memory partition is classified

at a single security level, ED may later reconfigure that

partition to store and process data at a different security

level. Because it stores and processes data classified at

different security levels, security violations by ED could

cause significant damage. To prevent violations of data

separation, for example, the “leaking” of data from one

memory partition to another, the ED design uses a

separation kernel to mediate access to memory. By

mediating every access, the kernel ensures that every

memory access is authorized and that every transfer of

data from one ED memory location to another is authorized.

Any attempted memory access by ED that is unauthorized

will cause an exception.

3 CODE VERIFICATION PROCESS

Given 1) source code annotated with Floyd-Hoare pre-

conditions and postconditions and 2) a security property of

interest, the problem is how to establish that the code

satisfies the property. This section presents a five-step

process for establishing the property, each step producing

one of the five artifacts. The five steps of the process are

listed as follows:

1. Formulate a TLS of the code as a state machine
model in the style of [14], [15].

2. Formally express the security property as a property
of the state machine model. Confirm that the
property is preserved under refinement.

3. Translate the TLS and the property into the language
of a mechanical prover and prove formally that the
TLS satisfies the property.

4. Given source code annotated with preconditions
and postconditions, partition the code into three
categories—Event, Other, and Trusted Code—based
on some criterion determined by the property of
interest.

5. To demonstrate that the Event Code does not violate
the property of interest, construct a) a mapping from
the Event Code to the TLS events and from the code
states to the states in the TLS and b) a mapping from
the preconditions and postconditions of the TLS
events to the preconditions and postconditions that
annotate the corresponding Event Code. Demon-
strate separately that Trusted Code and Other Code

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 83

are benign. Based on these results, conclude that the
code refines the TLS.

Sections 3.1-3.5 describe how the above process was
applied to the annotated code which implements ED’s
separation kernel. Each section describes, in turn, one of the
five artifacts produced for ED. For the security property of
interest in ED, that is, data separation, the criterion for
partitioning was whether the code touched certain Memory
Areas of Interest (MAIs). Event Code corresponds to events in
the TLS that touch a MAI, Trusted Code touches a MAI but is
not Event Code, and Other Code is neither Event Code nor
Trusted Code. Section 3.4 precisely defines each of the three
code categories. To provide evidence for ED’s certification, a
logician manually annotated the kernel code with assertions
(that is, preconditions and postconditions) as a basis for
validating the functional correctness of the code. During the
certification process, evaluators from the certifying authority
conducted a complete code walkthrough of the annotated
code to check the correctness of the assertions. Checking that
the kernel code enforces data separation uses these assertions
in Step 5.

3.1 Top Level Specification

Major goals of the TLS are to provide a precise yet
understandable description of the allowed security-relevant
external behavior of ED’s separation kernel and to make the
assumptions on which the TLS is based explicit.1 To achieve
this, the TLS of the kernel behavior is represented in precise
natural language as a state machine model by using the
style of the Military Message System (MMS) security model
[14], [15]. The advantage of precise natural language is that
it enables stakeholders with differing backgrounds and
objectives, that is, the project manager, software developers,
evaluators, and the formal methods team, to communicate
precisely about the required kernel behavior and helps
ensure, early in the verification process, that misunder-
standings are weeded out and issues are resolved. Another
goal of the TLS is to provide a formal context and precise
vocabulary for defining data separation.

Like the secure MMS model, the state machine repre-
senting the kernel behavior is defined in terms of an input
alphabet, a set of states, an initial state, and a transform
relation describing the allowed state transitions. The input
alphabet contains internal and external events, where an
internal event can cause the kernel to invoke some process,
and an external event is performed by an external host. The
transform (also called the next-state relation) is defined on
triples consisting of an event in the input alphabet, the
current state, and the new state. This section contains
excerpts from the TLS. To provide intuition about the
observable kernel behavior of ED, it also describes the five
internal events and the single external event (the last event),
listed in the leftmost column of Table 1.

Partitions, state variables, events, and states. We
assume the existence of n � 1 dedicated memory partitions
and a single shared memory area. We also assume the
existence of the following sets:

. V is a union of types, where each type is a nonempty
set of values.

. R is a set of state variable names. For all r in R,
TYðrÞ � V is the set of possible values of state
variable r.

. M is a union of N nonoverlapping memory areas,
each represented by a state variable.

. H ¼ P [E is a set of M events, where each event is
either an internal event in P or an external event inE.

A system state is a function mapping each state variable
name r in R to a value. Formally, for all r 2 R, sðrÞ 2 TYðrÞ.
Given state s and state variable r, we abbreviate sðrÞ by rs.

Memory areas. The N memory areas contain N � 1
MAIs, where N � 1 ¼ mn and m is the number of MAIs per
partition. Informally, a MAI is a memory area containing
data whose leakage would violate data separation. The
m MAIs for a partition i, 1 � i � n, include partition i’s
input and output buffers and k data areas where data in
partition i are stored and processed. The Nth memory area,
called G, is the single shared memory area and contains all
programs and data not residing in any MAI. The set M of
all memory areas is defined as the union A [fGg, where
A ¼ fAi;j j 1 � i � n ^ 1 � j � mg contains the mn MAIs.
For all i, 1 � i � n, Ai ¼ fAi;j j 1 � j � mg is the set of
memory areas for partition i. To ensure that they are
nonoverlapping, the memory areas ofM are required to be
pairwise disjoint.

State variables. The set of state variables2 contained in
R are

. a partition id c,

. the N memory areas in M, and

. a set of n sanitization vectors W½1�; . . . ;W½n�, each
vector containing k elements.

The partition id c is 0 if no data processing in any partition
is in progress and it is i, 1 � i � n, if data processing is in
progress in partition i. (Data processing can occur in only
one partition at a time.) For 1 � j � k, the Boolean value of
the jth elementWj½i� of the sanitization vector for partition i
is true initially and if the jth memory area of the
ith partition has been sanitized since it was last written,
and otherwise false. A sanitized memory area is modeled as
having the value 0.

Events. The set of internal events P � H is the union of
n sets, P1; . . . ; Pn, of partition events, one set for each

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

1. For example, the assumptions make explicit those routines that the
certification authority agreed were outside the scope of the formal
verification.

2. By convention, state variable names may refer to the values of the
variables.

TABLE 1
Excerpts from the Nonnull Portion of

Access Control Matrix AM for Partition i, 1 � i � n

partition i, and a singleton set Q. Thus, P is defined by
P ¼ ½[ni¼1Pi� [Q. Processing occurs on partition i when a
sequence of events from Pi is processed. The first four
events listed in Table 1 are partition events in some Pi. The
first event, Begin Partition i, initiates data processing in
partition i. The next two events process data stored in
i’s memory areas: Event Copy B1In D1 i copies data from
B1
i , which is an input buffer assigned to i, into a memory

area D1
i of i and event Clear D1 i sanitizes memory area D1

i .
The event End Partition i concludes data processing in
partition i. Q’s sole member is Other_NonPartProc,
which is the fifth event listed in Table 1, an abstract event
representing all internal events that invoke data processing
in the shared memory area G. An example is the event that
copies a shared algorithm, written by some external host
into a shared input buffer, to some other part of G.

The set of external events E � H is defined by
E ¼ EIn [EOut [fExt Ev Otherg, where EIn ¼ [ni¼1E

In
i and

EOut ¼ [ni¼1E
Out
i . EIn

i is the set of external events writing
into or clearing the input buffers of partition i and EOut

i is
the set of external events reading from or clearing the
output buffers of partition i. The event Ext_Ev_Other

represents all other external events. ExtEv B1In i, the last
event listed in Table 1, is an example of an external event in
EIn which occurs when an external host writes data (to be
processed in partition i) into the input buffer B1

i .
Partition and nonpartition functions. Operations on

data in partition i, for example, an operation copying
data from one MAI in partition i to another MAI in i, are
called partition functions. For all i, 1 � i � n, and, for each
internal event e in Pi, there exists a partition function �e
associated with e. For all e 2 Pi, �e has the signature
�e : TYða1Þ ! TYða2Þ, where a1 and a2 are MAIs in Ai.
Thus, each function �e, where e is an internal event in Pi,
takes a single argument, that is, the value stored in some
MAI a1 and uses that argument to compute a value to be
stored in MAI a2 as the result of event e. A nonpartition

function �e has access to data in G only.
Access control matrix. Associated with the M events and

N memory areas is an M by N access control matrix AM,
which indicates the access privileges that each internal
event e in P (and its associated process) and each external
event e in H has for each memory area a in M. The access
privileges are either null for no access, R for read access, W
for write access, or RW for both read and write access.
Table 1 shows excerpts from the access control matrix AM.
The leftmost column of Table 1 lists the events in H and the
headings of the remaining columns list memory areas inM.
The rightmost column heading contains G, the only non-
MAI, while the remaining column headings contain all
MAIs for partition i. For all i, 1 � i � n, AM shows the
access privileges that each internal and external event has
for each of i’s memory areas and for memory area G. In
Table 1, “�” denotes null access. For all i; j, 1 � i; j � n,
i 6¼ j, the access privilege that an event associated with i

has to a memory area associated with j (not shown in
Table 1) is null. Similarly, the access privilege that an
event associated with j (not shown in Table 1) has to a
memory area associated with i is also null.

To illustrate how AM limits access to the memory areas in
M, we consider the event in the second row of Table 1, that is,
e ¼ Copy B1In D1In i. Table 1 shows that a process invoked
by e has read access to B1

i , one of i’s input buffers, and write
access to D1

i , one of i’s data areas, and null access to all other
memory areas in M. Thus, for event e, AM½e;B1

i � ¼ R,
AM½e;D1

i � ¼ W, and AM½e; a� ¼ null for all a, a 2 M,
a 62 fB1

i ; D
1
i g. Similarly, the event Clear D1 i can only write

toD1
i and the abstract eventOther NonPartProconly has read

and write access to G. The events that begin and end data
processing on i, Begin Partition i and End Partition i,
cannot write to any memory area. Finally, the external event
ExtEv B1In i invokes a process that can only read and write
into the input buffer B1

i .
System. A system is a state machine whose transitions

from one state to the next are triggered by events. Formally,
a system � is a 4-tuple � ¼ ðH;S; s0; T Þ, where

. H is the set of events,

. S is the set of states,

. s0 is the initial state, and

. T is the system transform, a partial function from
H � S into S. T is partial because not all events are
“enabled” to be executed in the current state.

Initial state. In the initial state s0, the partition id c is 0;
for all i, 1 � i � n, the MAIs in Ai are 0; and each element of
the sanitization vectors W½1� . . .W½n� is true. Hence, in the
initial state, no processing in any partition is authorized,
only a nonpartition process is authorized to execute, all
MAIs are zero, and all data areas are known to be sanitized.

System transform. The transform T is defined in terms
of a set R of transform rules R ¼ fRe j e 2 Hg, where each
transform rule Re describes how an event e transforms a
current state into a new state. The number of rules is M, one
rule for each of the M events in H. No rule requires access
privileges other than those defined by the access control
matrix AM. The notation s and s0 represents the current
state and the new state, respectively. When an internal or
external event e does not affect the value of any state
variable r, when the precondition is not satisfied, or when
the event e is not enabled, the value of r does not change
from state s to state s0 and the state variable r retains its
current value, that is, rs ¼ rs0 .

To denote that no state variable changes, except those
explicitly named, we write NOCR̂ (NO Change, except to
variables in R̂), where R̂ � R. This notation also covers the
case where the ith element of a sanitization vector changes,
but no other vector elements change. For example, the
postcondition rs0 ¼ x ^ NOCfrg, where x 2 TYðrÞ, is
equivalent to rs0 ¼ x ^ 8 r̂ 2 R, r̂ 6¼ r: r̂s0 ¼ r̂s.

Suppose that s is a state in S, e is an event in H, and R is
the set of state variables. Let pree be a state predicate
associated with e such that pree evaluates to true if e has the
potential to occur in state s and false otherwise. In addition,
let poste be a predicate associated with e such that
posteðs; s0Þ holds whenever e occurs in state s and s0 is a
possible poststate of s when event e occurs in state s.
Formally, the transform rule Re in R is defined by

Re : preeðsÞ) posteðs; s0Þ:

Whenever the result state of every event e is deterministic
(which is true in the TLS for ED), the assertion posteðs; s0Þ

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 85

defines the poststate s0 ¼ T ðe; sÞ. To make T total on H � S,

the complete definition of T is written as

T ðe; sÞ ¼ s0; if preeðsÞ; where posteðs; s0Þ
s; otherwise:

�

In the above definition, preeðsÞ is not satisfied implies that e

has no effect, that is, essentially e does not occur. Abstractly,

this models raising an exception and halting.
Examples of transform rules. For all i, 1 � i � n, the

transform rule for e ¼ Begin Partition i, which begins

data processing on i, is denoted RBegin Partition i. A precondi-

tion for event e is that the partition id is 0 (that is, the system

is not currently processing data on any partition) and the

postcondition for e is that the partition id is i. For all i,

1 � i � n, and, for all states s and s0, the rule Re for e ¼
Begin Partition i is defined by

RBegin Partition i : cs ¼ 0) cs0 ¼ i ^NOCfcg:

The notation NOCfcg means that no state variable other than

the partition id c can change. Similarly, for all i, 1 � i � n,

the rule Re for e ¼ End Partition i, which ends data

processing on i, is defined by

The expression “8 1 � j � k,Wj
s½i� ¼ true” in the above rule

means that each element of the sanitization vector for i must

be true for data processing on i to end. This can be achieved

by invoking clear events such as Clear D1 i prior to invoking

End Partition i. The purpose of this precondition is to

ensure that all data areas of partition i are sanitized prior to

processing on G, on partition j, j 6¼ i, or on a new

configuration of i. The transform rules RBegin Partition i and

REnd Partition i are the only rules that change the value of the

partition id c. Together, these rules constrain the partition

id c to change from 0 to nonzero or from nonzero to 0.
Processing on a partition i can include copying data from

an input buffer of partition i to a data area of partition i.

Consider again the internal event e ¼ Copy B1In D1In i,

whose transform rule is denoted RCopy B1In D1In i. The

preconditions for e are:

(1) The partition id c is equal to i.
(2) The invoked process must have read access R for

partition i’s Input Buffer 1 and write access W for
Data Area 1 in partition i.

Postconditions for e are:

(3) The element for Data Area 1 in partition i’s
sanitization vector becomes false (because the event
stores the value of Buffer 1 in Data Area 1).

(4) A function of the value in partition i’s Input Buffer 1
is written into partition i’s Data Area 1.

(5) No other state variable changes.

For all i, the rule Re for event e ¼ Copy B1In D1In i is

defined by

As the fourth and final example of a transform
rule, consider the rule for the internal event
e ¼ Other NonPartProc, which represents all nonpartition
processing events. The precondition is that the partition id c
is 0 (that is, the system is not currently processing data on
any partition). The effect is that some part of memory area
G may change. The rule Re for e ¼ Other NonPartProc is
defined by

ROther NonPartProc : cs ¼ 0 ^ AM½e;G� ¼ RW

) Gs0 ¼ �eðGsÞ ^
8 r 2 R; r 6¼ G : rs0 ¼ rs:

3.2 Security Property: Data Separation

To operate securely, ED must enforce data separation, that
is, it must prevent insecure data flows. Informally, this
means that ED must prevent data in a partition i from
influencing or being influenced by 1) data in a partition j,
where i 6¼ j, 2) data in an earlier configuration of partition i,
or 3) data stored in G. To demonstrate that the TLS enforces
data separation, we proved that it satisfies five subproper-
ties, namely, No-Exfiltration, No-Infiltration, Temporal Separa-
tion, Separation of Control, and Kernel Integrity. Each
subproperty is formally defined below by using the
notation in Section 3.1.

3.2.1 No-Exfiltration Property

The No-Exfiltration Property states that data processing in
any partition j cannot influence data stored outside the
partition. This property is defined in terms of the set Aj (the
MAIs of partition j); the entire memory M; the internal
events in Pj, which invoke data processing in j; and the
external events in EIn

j [EOut
j , which affect data in j’s input

and output buffers.

Property 3.1 (No-Exfiltration). Suppose that states s and s0 are
in state set S, event e is in H, memory area a is inM, and j is
a partition, 1 � j � n. Suppose further that s0 ¼ T ðe; sÞ. If e
is an event in Pj [EIn

j [EOut
j and as 6¼ as0 , then a is in Aj.

3.2.2 No-Infiltration Property

The No-Infiltration Property states that data processing in
any partition i is not influenced by data outside that
partition. It is defined in terms of the set Ai, which contains
the MAIs of partition i.

Property 3.2 (No-Infiltration). Suppose that states s1, s2, s01,
and s02 are in S, event e is in H, and i is a partition, 1 � i � n.
Suppose further that s01 ¼ T ðe; s1Þ and s02 ¼ T ðe; s2Þ. If, for all
a in Ai, as1

¼ as2
, then, for all a in Ai, as0

1
¼ as0

2
.

3.2.3 Temporal Separation Property

This property ensures that no data (for example, Top Secret
data) stored in the ith partition during one configuration of

86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

the partition can remain in any memory area of a later
configuration (for example, processing Unclassified data) of
that same partition i. The property is guaranteed if the
k data areas in any partition i are clear when the system is
not processing data in that partition, for example, from the
end of a processing thread in one partition to the start of a
new processing thread in the same or a different partition.3

The set of states in which the system is not processing data
stored in a partition is exactly the set of states in which the
partition id c is 0. This fact is used in stating the property.

Property 3.3 (Temporal Separation). For all states s in S, for
all i, 1 � i � n, if the partition id cs is 0, then the k data areas
of partition i are clear, that is, D1

i;s ¼ 0; . . . ; Dk
i;s ¼ 0.

3.2.4 Separation of Control Property

This property states that, when data processing is in progress
on partition i, no data is being processed on partition j, j 6¼ i,
until processing on partition i terminates. The property is
defined in terms of the partition id c and the set Di of k data
areas in partition i, Di ¼ fDj

i j 1 � j � kg.
Property 3.4 (Separation of Control). Suppose that states s

and s0 are in S, event e is in H, data area a is in M, and j,
where 1 � j � n, is a partition id. Suppose further that
s0 ¼ T ðe; sÞ. If neither cs nor cs0 is j, then as ¼ as0 for all
a 2 Dj.

3.2.5 Kernel Integrity Property

The Kernel Integrity Property states that, when data
processing is in progress on partition i, the data stored on
memory area G does not change. This property is defined in
terms of G and the set Pi of events for partition i.

Property 3.5 (Kernel Integrity). Suppose that states s and s0

are in state set S, event e is in H, and i is a partition,
1 � i � n. Suppose further that s0 ¼ T ðe; sÞ. If e is a partition
event in Pi, then Gs0 ¼ Gs.

3.3 Formal Verification

To formally verify that the TLS enforces data separation, the
natural language formulation of the TLS was translated into
TAME (Timed Automata Modeling Environment) [16], [17],
a front end to the mechanical prover PVS [18] which helps a
user specify and reason formally about automata models.
This translation requires the completion of a template to
define the initial states, state transitions, events, and other
attributes of the state machine �. The TAME specification
provides a machine version of the TLS that can be shown
mechanically to satisfy the properties defined in Section 3.2.
After constructing the TAME specification of the TLS, we
formulated two sets of TLS properties in TAME —invariant
properties and other properties—which together formalize
the five subproperties. Then, for each set of properties, we
interactively constructed (TAME) proofs showing that the
TAME specification satisfies each property. The scripts of
these proofs, which are saved by PVS, can be rerun easily by
the evaluators and serve as the formal proofs of data
separation. One benefit of TAME is that the saved PVS
proof scripts can be largely understood without rerunning
them in PVS.

3.4 Partitioning the Code

To show formally that the separation kernel enforces data

separation, we must prove that the kernel is a secure partial

instantiation of the state machine � defined by the TLS. The

formal verification described in Section 3.3 establishes

formally that a strict instantiation of the TLS enforces data

separation. A partial instantiation of the TLS is an imple-

mentation that contains fine-grained details which do not

correspond to the state machine � defined in the TLS. A

secure partial instantiation of the TLS is a partial instantiation

of the TLS in which the fine-grained details that do not

correspond to the TLS are benign. Section 4 contains the

formal foundation for the proof that the code is a secure

partial instantiation of the TLS.
The proof that the code for the ED kernel is a secure

partial instantiation of the TLS is based on a demonstration

that all kernel code falls into three major categories and one

subcategory, with proofs that the code in each category

satisfies certain properties. The categories are given as

follows:

1. Event Code is kernel code that implements a TLS
internal event e in P and touches one or more MAIs.
For each segment of Event Code, it is checked that

i. the concrete translation of the precondition in
the TLS for the corresponding event e is satisfied
at the point in the kernel code where the
execution of the event code is initiated, and

ii. the concrete translation of the postcondition in
the TLS for the corresponding event e is satisfied
at the conclusion of Event Code execution.

2. Trusted Code is kernel code that touches MAIs but is
not Event Code. This code does not correspond to
behavior defined by the TLS and may have read and
write access both to MAIs and to memory areas
outside the MAIs. It is validated either by a proof
that the code does not permit any nonsecure
information flows or, in rare instances, by external
certification. The TLS makes explicit any assump-
tions used in connection with the Trusted Code and
its behavior. The proofs for a given segment of the
Trusted Code characterize the entire functional
behavior of that Trusted Code by using Floyd-Hoare
style assertions at the code level and show that no
nonsecure information flows can result from that
code.

3. Other Code is the kernel code that is neither Event
Code nor Trusted Code. More specifically, Other
Code is kernel code which does not correspond to
any behavior defined by the TLS and has no access
to any MAI.

a. A subset of the Other Code, called Validated Code,
is code with no access to MAIs which is still
security relevant because it performs functions
necessary for the kernel to enforce data separa-
tion. These functions include setting up the
MMU, establishing preconditions for the Event
Code, etc. Floyd-Hoare style assertions at the code

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 87

3. The proof of this property depends on the constraint noted earlier: If c
changes, it changes from 0 to nonzero or vice versa.

level are used to prove that Validated Code
correctly implements the required functions.

The kernel code was manually partitioned into Event,
Trusted, and Other Code. A first pass through the code
showed that only a small number of functions could reset
the MMU (that is, change the access permissions to memory
areas). Apple’s Xcode development tool [19] was used to
search the kernel code for all calls to these functions. Each
such call was inspected to determine the memory areas to
which access was granted. By analyzing the access granted
to code segments categorized as Other Code, one can verify
that functions called in these code segments have no access
to any MAI.

Partitioning the code in this manner dramatically
reduces the cost of code verification since only the Event
Code, a small part of the code, needs to be checked for
conformance to the TLS. In ED, Event Code and Trusted
Code comprised less than 10 percent of the code. The
remaining 90 percent was Other Code.

3.5 Demonstrating Code Conformance

Demonstrating that the kernel code conforms to the TLS
requires the definition of two mappings. To establish
correspondence between concrete states in the code and
abstract states in the TLS, a function� is defined which relates
concrete states to abstract states by relating concrete entities
(such as memory areas, code variables, and logical variables)
to abstract state variables in the TLS (such as MAIs and the
partition id) and mapping the value space of each concrete
entity to that of its corresponding abstract state variable. For
example,�maps the actual physical addresses of the MAIs to
their corresponding abstract state variables in the TLS. In the
ED kernel code, � maps a global variable partition id,
corresponding to the partition id, to the TLS partition id

variable c. The TLS sanitization vectors have no analogs in the
code. Instead, a predicate can be inferred from the code to
indicate whether a memory area is sanitized. To represent
sanitization in the concrete machine, new logical variables
(for example, part data1 sanitized i) are introduced, and
� maps these variables to elements of the sanitization
vectors in the TLS. The map � also maps the Event Code to
events in the TLS. Another map � relates assertions at the
abstract TLS level to equivalent assertions at the code level
derived from the abstract assertions and the map �. See
Section 4 for more details.

Using � to relate preconditions and postconditions for an
event in the TLS to the derived preconditions and postcondi-
tions for the corresponding Event Code, we next determine,
for each piece of Event Code, sets of code-level preconditions
and postconditions that match the derived preconditions and
postconditions as closely as possible. Fig. 1 shows the Event
Code corresponding to the internal eventCopy B1In D1In i in
the TLS (see Section 3.1) and the code-level preconditions and
postconditions for this Event Code. Although the Event Code
for Copy B1In D1In i consists of only a single function call,
generally, Event Code may consist of any block of code. In
Fig. 1, the top box contains the preconditions, then the
indented Event Code is listed, and, finally, the bottom box
contains the postconditions. Each precondition and post-
condition has the form fAssertion Name : Assertiong.
Generally, the match between assertions in the TLS and
derived code-level assertions is not exact because auxiliary
assertions are added (see Fig. 1) 1) to express the
correspondence between variables in the code and physical
memory areas4 (for example, CopyDIn local datain), 2) to
save values in memory areas as the values of logical variables

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 1. Event Code and code-level assertions for the event Copy_B1In_D1In_i.

4. This facilitates Floyd-Hoare reasoning at the code level.

(for example, CopyDIn value data), and 3) to express error
conditions (for example, CopyDIn copy size datain) that the
TLS abstracts away via type correctness. The derivation of the
necessary code-level assertions is also complicated by the
code itself. For example, although there is a global variable
partition id in the code, in many of the routines
implementing Event Code, the partition id used in the
routine is an argument that is passed into the routine.
This results in a code-level precondition asserting that the
local variable for the partition id is equal to the global
variable partition id (for example, CopyDIn partition id

in Fig. 1).
After defining the desired sets of code-level preconditions

and postconditions, we check whether these assertions are
among the assertions already proven in the annotated C
code.5 The annotated C code often refers to memory areas by
indexing into arrays that define memory maps in the code,
whereas the mapping� refers to memory areas by their actual
physical addresses. Thus, to be equivalent to the desired
assertions, the assertions in the annotated code frequently
need dereferencing. For example, the annotated C code
assertion x8.4, TLS2 (see Table 2) is defined by

which sets the variable part data start to the starting
address of the data area in the partition by indexing into the
real-time memory map in the code and selecting the
part data start member of the structure corresponding
to that array element. Dereferencing the index into the
array and pointer into the structure yields the memory
area KER PAR DATA STORAGE 1 partition START, the actual

physical address of the partition data area, which stores
the value used in the code-level precondition
CopyDIn local datain (see the last line of the top box
in Fig. 1).

In our initial attempt to match a precondition and
postcondition in the annotated C code with each desired
precondition and postcondition, either

. the desired assertion exactly matched an assertion in
the annotated code,

. the desired assertion exactly matched an assertion
in the annotated code, except dereferencing was
required,

. the desired assertion was a close but not exact match
of an assertion in the annotated code, or

. no code assertion exactly or approximately matched
the desired assertion.

We worked with the logician who annotated the C code to
ensure that assertions corresponding to all of the desired
preconditions and postconditions were added to and verified
on the code. (In general, it is sufficient to include strongest
postconditions implying our derived assertions.) For exam-
ple, assertions about a predicate SANITIZED on memory areas
were added to the annotated code to provide correspon-
dence to the necessary code-level assertions about the
sanitization of memory areas. To show correspondence
between the preconditions and postconditions in the code
and the TLS, two tables were created for each TLS event.
Tables 2 and 3 are the correspondence tables for the
preconditions and postconditions of the transform rule for
the TLS event Copy B1In D1In. In the tables, s and s0 ¼
T ðe; sÞ represent the abstract prestate and poststate, sc and
s0c represent the concrete prestate and poststate, and �,
which is formally defined in Section 4, maps abstract
predicates to corresponding concrete predicates.

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 89

5. In general, the annotated code contains significantly more assertions
than are needed to show correspondence because the annotations were
primarily designed to show the functional correctness of the code.

TABLE 2
Mapping Preconditions in the Code to Preconditions in the TLS

TABLE 3
Mapping Postconditions in the Code to Postconditions in the TLS

In Tables 2 and 3, the first column contains the label of a

desired code-level precondition or postcondition from

Fig. 1, the second column gives the location (the section

number and assertion label) of the corresponding assertion

in the annotated C code, the third column contains the

corresponding precondition or postcondition (if any) in the

TLS, the fourth column gives the reference number of the

corresponding assertion in the transform rule, and the fifth

column briefly describes the assertion. In cases where no

corresponding assertion exists in the TLS, “�” appears in

both the third and fourth columns. An asterisk “	” in the

second column indicates that, for equivalence between the

assertion in the annotated code and the desired code

assertion to hold, the assertion in the annotated code

requires dereferencing.

Tables 2 and 3 show that, for every precondition and

postcondition of CopyB1In D1In i, there is an equivalent

precondition or postcondition in the annotated code. There-

fore, we have shown that, for CopyB1In D1In i, the full

code-level preconditions and postconditions imply the TLS

preconditions and postconditions. Using the same techni-

ques, we have also demonstrated the analogous result for

the remaining events. As shown in Section 4, this demon-

strates that the Event Code implementing the separation

kernel is a refinement of the TLS.

4 FORMAL FOUNDATIONS

Section 4.1 adapts the classical theory of refinement [10], a

technique for proving that a concrete state machine model

conforms to (that is, is a refinement of) an abstract state

machine model, into a form that we can use to show that the

behavior of the kernel code conforms to the behavior

captured in the TLS. Section 4.1 also covers the formal

foundation for our method of proving refinement and

describes how we have applied it to verify that the kernel

code correctly implements the TLS. The refinement proof

technique that we use is closed under iteration (see

Appendix A for the formal statement and proof). Section 4.2

compares our use of refinement relations and our method of

verifying them with other techniques for applying and

proving refinements.

4.1 Adapting the Classical Theory of Refinement

To begin, a function � is defined which maps each concrete
state at the code level to a corresponding abstract state in
the TLS state machine � by relating variables at the concrete
code level to variables at the abstract TLS level. Variables at
the concrete level include variables in the code, predicates
defined on the code, logical history variables, and memory
areas. Among the most important memory areas treated as
concrete state variables are the data areas and the input and
output buffers assigned to each partition, all of which are
central to reasoning about possible information flows.
Provided each possible value of a concrete state variable
can be represented by some possible value of the
corresponding abstract state variable (as is true for ED),
the map � from concrete to abstract state variables induces a
map � : Sc ! Sa from concrete to abstract states in the

obvious way.6 Once � is defined at the level of states in
terms of state variables and their values, the set Ec of Event
Code segments is identified, and � is extended to map each
code segment ec in Ec to a corresponding internal event
ea ¼ �ðecÞ in the TLS.7

The map � from concrete states to abstract states
provides a means of taking any predicate Pa : Sa ! Bool

on abstract states and deriving a corresponding predicate
�ðPaÞ : Sc ! Bool on concrete states as follows:

�ðPaÞðscÞ ¼� Pað�ðscÞÞ;

where sc is any state in Sc. Analogously, � can be used to
derive a predicate �ðPaÞ : Sc � Sc ! Bool on pairs of
concrete states from a predicate on pairs of abstract states
as follows:

�ðPaÞðs1
c ; s

2
cÞ ¼

�
Pað�ðs1

cÞ; �ðs2
cÞÞ;

where s1
c and s2

c are any states in Sc. The map � is used to
relate preconditions and postconditions in the code to
preconditions and postconditions in the TLS (see Fig. 2).
Note that preconditions (at both levels) apply only to one
state. To capture the fact that an event changes only certain
state variables (indicated at the abstract level by the
notation NOC), the postconditions are represented at both
levels as predicates on two states.

In Fig. 2, we follow the convention of representing �ðscÞ
by sa. Note that, although the preconditions and postcondi-
tions on the concrete and abstract transitions in Fig. 2 are
denoted analogously, their required relationships to their
corresponding transitions differ. In particular, the precon-
dition Preea

ðsaÞ is a guard that, when false, prevents ea from
firing, while the precondition Preec

ðscÞ is simply an
assertion known to hold before ec fires. Moreover, the
postcondition Postea

ðsa; eaðsaÞÞ is intended to capture the
effect of the action ea on the state sa, while the postcondition
Postec

ðsc; ecðscÞÞ is simply an assertion known to hold for
the states before and after ec fires. Hence, the requirements
for the abstract preconditions and postconditions fulfill the
requirements for concrete preconditions and postconditions
(but not vice versa). Thus, in our refinement proof method

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 2. Relations to establish between concrete and abstract transitions

and preconditions and postconditions.

6. To distinguish abstract from concrete entities, this section tags abstract
entities with an a and concrete entities with a c. For example, Sa represents
the abstract states and Sc represents the concrete states.

7. When external events, which have no corresponding event code, can
occur in a system (as is true in the ED kernel), � must be similarly extended
to map these “concrete” external events to their abstract equivalents. At both
levels, the preconditions of external events are true and their postconditions
capture their effects.

below, an abstract TLS can play a role analogous to concrete
code with respect to a still more abstract TLS. For details,
see Appendix B.

To establish equivalence between the behavior of the
kernel code and a subset of the behavior modeled in the
TLS, it is sufficient to prove, in the simplest case, that, for
every ec in Ec, the following conditions hold:

1. Whenever the concrete code segment ec is ready to
execute in state sc, some concrete precondition Preec

holds, where Preec
implies �ðPreea

Þ, the concrete
precondition derived from the abstract precondition
for ea ¼ �ðecÞ.

2. Whenever the concrete precondition Preec
holds for

the current program state sc, some concrete post-
condition Postec

holds for the pair of program states
ðsc; ecðscÞÞ immediately before and immediately after
the execution of ec, where Postec

implies �ðPostea
Þ,

the concrete postcondition derived from the abstract
postcondition for ea.

3. The diagram in Fig. 2 commutes whenever Preec
ðscÞ

holds.

Although this method requires the proof of conditions 1, 2,
and 3, it is essentially condition 3 that is needed for � to be a
refinement mapping. To prove condition 3, it is normally
sufficient to prove conditions 1 and 2.

Theorem 4.1. Provided 8s, s0 2 Sa : Preea
ðsÞ) ½Postea

ðs; s0Þ

ðs0 ¼ eaðsÞÞ� (this holds for poste in the TLS transform

described in Section 3.1), conditions 1 and 2 imply condition 3.

Proof. By hypothesis, we know that

(i) 8s, s0 2 Sa : Preea
ðsÞ) ½Postea

ðs; s0Þ
 ðs0 ¼ eaðsÞÞ�
and may assume that conditions 1 and 2 hold. Further,
by the hypothesis of condition 3, we may also assume
that

(ii) Preec
ðscÞ.

By condition 1, it follows from (ii) that �ðPreea
ÞðscÞ,

which means, by the definition of �, that

(iii) Preea
ð�ðscÞÞ.

Furthermore, by condition 2, we have

(iv) Preec
ðscÞ) Postec

ðsc; ecðscÞÞ;
and

(v) Postec
ðsc; ecðscÞÞ) �ðPostea

Þðsc; ecðscÞÞ.
Thus,

Preec
ðscÞ ðby ðiiÞÞ

) Postec
ðsc; ecðscÞÞ ðby ðivÞÞ

) �ðPostea
Þðsc; ecðscÞÞ ðby ðvÞÞ

, Postea
ð�ðscÞ; �ðecðscÞÞÞ ðby the definition of �Þ

, �ðecðscÞÞ ¼ eað�ðscÞÞ ðby ðiÞ and ðiiiÞÞ:

But, the last assertion means that the diagram in Fig. 2
commutes, which is the conclusion of condition 3. tu
The hypothesis of Theorem 4.1 does not truly limit its

use, provided that the abstract postcondition exactly
captures all possible effects of the abstract transition. In
particular, suppose that the definition of the abstract

transition allows nondeterminism, and that one has estab-
lished, based on conditions 1 and 2 and the hypothesis of
condition 3, that Postea

ð�ðscÞ; �ðecðscÞÞÞ, that is, that
Postea

ðsa; �ðecðscÞÞÞ. Then, to fulfill the hypothesis of
Theorem 4.1, one can simply replace ea by its deterministic
instance for which the abstract poststate eaðsaÞ is �ðecðscÞÞ.

Establishing conditions 1-3 guarantees that, whenever
the code segment ec executes in the code, there is an enabled
event ea in the TLS that causes a transition from the abstract
image sa under � of the concrete prestate sc at the code level
into an abstract state eaðsaÞ that is the abstract image under
� of the concrete poststate ecðscÞ at the code level. More
concisely, conditions 1, 2, and 3 imply that there exists an
abstract transition that models the concrete transition.

The relation of Event Code segments to abstract events
can be slightly more complex than shown in Fig. 2. For
example, in some cases, ec may implement more than one
event. However, these more complex cases can usually be
handled similarly. When a concrete event implements
n abstract events, for example, one looks for a partition
Prec
 Pre1

c � . . .� Prenc of the concrete precondition Prec

such that, when the ith part Preic holds, the code ec

implements the ith abstract event. Then, one establishes,
for each i, a commutative diagram analogous to the
diagram in Fig. 2.

The argument that the kernel code of ED ensures data
separation is based on relating executions of the code to
executions in the TLS. To begin, we observe that � maps
ED’s initial state via � to an allowed initial state in the TLS.
To support the remainder of the argument, the Event Code
set Ec and the code-level map � are extended to cover the
Other Code. Most Event Code segments consist of a single
program statement. In contrast, Other Code contains many
lengthy code segments which simply manipulate local
variables inside a function or procedure and do not map
to any abstract event. Such segments typically occur prior to
an Event Code segment. We model these Other Code
segments at the abstract level by a no-op (“do nothing”)
event implicitly included in the TLS. It is possible to map
the effect of a segment of the Other Code to a no-op in the
TLS because, unlike Event and Trusted Code, the Other
Code has no access to MAIs. Because every code segment in
the Event or Other Code is modeled either by an abstract
TLS event with concrete and abstract transitions related as
in Fig. 2 or by a no-op in the TLS, it follows that every
execution of this part of the code corresponds to an
execution in the TLS.

Trusted Code in the ED kernel can be related to the TLS
as follows: First, it is established that no segment of the
Trusted Code causes insecure data flows. Some segments of
the Trusted Code have been verified, and the remaining
segments have been certified externally to cause no insecure
information flows. The state change caused by each Trusted
Code segment is then shown to map to the result of either a
no-op in the TLS or some sequence of events in the TLS. In
the overall argument that an execution of concrete code
always maps to a possible execution in the TLS, each
Trusted Code segment is treated as an indivisible unit. In
ED, this is possible because each Trusted Code segment

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 91

executes within a single partition and executions within a
partition are never interrupted.

Combining this reasoning with the additional assurance
that � relates concrete data and buffer memory areas to
abstract ones and thus models all information flows
involving MAIs, it follows that all kernel behavior relevant
to data separation at the concrete level is modeled at the
abstract level. Thus, the Data Separation Property proven at
the abstract level also holds at the concrete level.

4.2 Uses and Proof Methods for Refinement

Although some details of how they are applied may vary,
commutative diagrams are widely used to describe the
required relationships between transitions at the concrete
and abstract levels in a refinement relation (sometimes
referred to as an abstraction relation).

When model checking is used to verify systems, a typical
approach is to generate an abstract model automatically
using data abstraction [20] or data type reduction [21] in a
way that guarantees that the original system is a refinement
of the model. Thus, any properties verified of the abstract
model that are preserved under refinement will also hold
for the system. In this approach, refinement is a given and
need not be proved. For us, it was not feasible to use model
checking to produce an abstract model. Due to the state
explosion problem, model checking for verification has
mostly been applied to hardware systems. Although, to
some extent, methods such as abstraction refinement [22]
have made it more feasible to apply model checking to
software systems, model checking is better for detecting
software bugs than for verifying software.

The concept of refinement also arises in the context of
proving an implementation relation from a more concrete
system model to a more abstract one. For example, Burch
and Dill [23] use decision procedures and Cyrluk [24] uses
PVS to verify that concrete models implement specifications
by proving that a set of diagrams commute, where the
diagram for each transition captures the correlation
between sequences of instructions at the concrete and
abstract levels. McMillan [21] avoids this use of commu-
tative diagrams by using compositional model checking for
proving implementation, in particular by model checking
individual transitions separately and then proving that the
results compose. In the context of hierarchical verification,
Robinson and Levitt [25] use a diagram that relates concrete
states to abstract states and concrete programs (or program
fragments) to abstract transitions in which the poststate is
mathematically defined in terms of the prestate. The
abstraction mappings of Robinson and Levitt, as well as
those of Burch and Dill and of Cyrluk, differ from ours in that
they require the mapping to be a surjection, whereas we
instead require it to be total. These authors’ condition for
implementation correctness is, like ours, that the diagram
must commute. The surjection-versus-total difference reflects
our different use of abstraction: They wish to prove that a
more concrete program fully implements its abstraction,
whereas we wish to deduce the correctness of the concrete
program from the correctness of the abstraction.

We also add a method for proving that a program (or
program fragment) implements an abstract transition by
proving certain relationships among preconditions and

postconditions at the concrete and abstract levels. Fig. 2
shows these required relationships, along with the commu-
tative diagram. We also make explicit that 1) at the state
variable level, the “state variables” mapped by the mapping
function can be derived variables or logical variables that,
for example, capture history and 2) postconditions are
actually predicates on two states. Thus, we are able to
handle state and transition information for which Abadi
and Lamport [10] use history and prophecy variables.

5 DISCUSSION

5.1 Applying Our Techniques to Other Security
Properties

This section considers the class of security properties that
can be verified using the techniques and formalization
described in Sections 3 and 4. Two important classes of
security properties are safety and liveness. In [26], Alpern
and Schneider formally define safety and liveness, conclud-
ing that any property p can be expressed as the intersection
of a safety property and a liveness property. Informally, a
safety property states that nothing “bad” happens during
execution and a liveness property states that something
“good” happens during execution [27]. For Alpern and
Schneider, a set of executions is called a property if
membership in the set is determined by each execution
alone, without reference to other executions in the set.
McLean has identified a serious limitation of this notion of
property—not every security property of interest is a
property of executions [28]—and presents Noninterference
as an example [29] of a property of sets of executions rather
than a property of executions.

For the techniques presented in Section 3 to apply, a
security property pmust be preserved under refinement. It is
well known that safety properties are preserved under
refinement but that liveness properties are not [10]. More-
over, McLean has shown that properties such as Noninter-
ference are not preserved by refinement [30]. Hence, our
techniques can be used to guarantee security properties that
are safety properties. It is easy to show that four of the security
properties defined in Section 3.2—No-Exfiltration, Temporal
Separation, Separation of Control, and Kernel Integrity—are
safety properties. Therefore, all four properties are preserved
by refinement. The fifth property, No-Infiltration, is not a
safety property because it is not a property of executions but a
property of sets of executions. However, it is easily shown to
be preserved under refinement.

Our approach may be applied to many applications that,
like ED, enforce access control. Applications that enforce
access control restrict the operations that subjects (for
example, users) can perform on objects (for example, data).
As long as the access control policy can be represented as a
safety property, our approach applies. A second important
class of applications to which our approach applies are those
described by Schneider, which use Execution Monitoring
(EM) to enforce security [31]. Examples of EM mechanisms
are reference monitors, firewalls, and other operating system
and hardware-based enforcement mechanisms described in
the literature. Excluded from this class are applications
that use more information than would be available from
observing only the states of a single system execution.

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Schneider shows that the security properties enforced by
EM mechanisms are safety properties.

5.2 Applying Our Method to Additional Kernel
Properties

In ED’s certification, our task was to develop a TLS of ED’s
kernel code, to verify that the TLS satisfies data separation,
and, finally, to demonstrate conformance of the kernel code to
the TLS. An important aspect of our approach is that, if
required, we can construct a refinement of the TLS by adding
new variables and events to the TLS to capture some behavior
of (that is, events in) the Other Code. If the security properties
that we wish to prove about this additional behavior are
preserved by refinement, then we can formally state and
prove the new security properties for the refinement of the
TLS and show correspondence between the related portion of
the Other Code and the new behavior. Because our proof
method can be iterated through a series of refinements (see
Appendix A), the proof of data separation remains valid
under such a refinement of the TLS.

6 LESSONS LEARNED

6.1 Software Design Decisions

Three software design decisions were critical in making
code verification feasible. One major decision was to use a
separation kernel, a single software module to mediate all
memory accesses. A design that distributed the checking of
memory accesses would have made the task of proving data
separation much more difficult. A second critical decision
was to keep the software simple. For example, once
initiated, data processing in a partition was run to
completion unless an exception occurred. In addition, ED’s
services were limited to the essential ones: The temptation
to add new services late in the development was resisted.
The third critical decision was enforcing “least privilege.”
For example, if a process only requires read access to a
memory area, the kernel only grants read, not read and
write, access.

6.2 Top-Level Specification

One significant challenge was to understand the exter-
nally visible security-relevant behavior of the separation
kernel. Both scenarios and the SCR (Software Cost
Reduction) tools [32], [33] were useful in extending our
understanding of the kernel behavior. To begin, we
formulated several scenarios, that is, sequences of events,
and specified the kernel response to those events. After
specifying a state machine model of the kernel in SCR,
we ran the scenarios through the SCR simulator. As
expected, formulating the scenarios and running them
through the simulator exposed gaps in our understand-
ing. Both the scenarios and the questions raised were
valuable in eliciting details of the security-relevant kernel
behavior from ED’s development team.

Once the kernel’s required behavior was understood,
approximately 2.5 weeks were needed to formulate the TLS
and the data separation property. The complete statement
of the TLS, including the assumptions, is only 15 pages
long. Keeping the size of the TLS small was critical for many
reasons. It simplified communication with the other

stakeholders, changing the specification when the kernel
behavior changed, translating the specification into TAME,
and proving that the TLS enforced data separation.

During the certification process, the natural language
representation of the TLS enabled stakeholders with
differing backgrounds and objectives—for example, the
project manager and the evaluators—to communicate easily
with the formal methods team about the kernel’s required
behavior. Discussion among the various stakeholders
helped ensure that misunderstandings were avoided and
issues were resolved early in the certification process. This
natural language representation of the TLS for ED contrasts
with the representations used in many other formal
specifications of secure systems, which are often expressed
in specialized languages such as ACL2 (for example, see
[34]). Moreover, any ambiguity inherent in the natural
language representation was removed by translating the
TLS into TAME since the state machine semantics under-
lying TAME is expressed as a PVS theory. One component
of the TLS in particular, the access control matrix, facilitated
communication between the formal methods team and
other stakeholders. Although the matrix was largely
redundant of other parts of the TLS, stakeholders could
easily understand the matrix and thus validate constraints
on the access privileges of processes invoked by each event.
The matrix was also useful in identifying the events and
MAIs to be included in the TLS.

6.3 Mechanized Verification

TAME’s specification and proof support significantly
simplified the verification effort and required a total of
about 3.5 weeks. Approximately 1.5 weeks was required to
produce the final TAME model of the TLS and to document
the correspondence between the TAME model and the TLS.
Some of this time was required to choose appropriate data
structures for representing the state variables and the
parameters of actions in TAME. The higher order nature
of PVS made it feasible to handle the unspecified number of
memory areas in the TLS by representing the overall
memory content in TAME as a function from a set of
memory areas to storable values and, in general, to produce
a very compact TAME specification (368 lines long). Once
the data representations were chosen, translating the TLS
and the five subproperties into TAME required only three
days. Adjusting the TAME specification to reflect later
changes in the TLS required only a few hours. To illustrate
the TAME representation, Appendix B provides TAME
versions of three of the five subproperties.

About two weeks was needed to formally verify that the
TLS enforces data separation. Most of this time was spent
formulating an efficient proof approach and then developing
a new TAME strategy to implement the approach. The new
PVS strategy, designed to simplify the proof guidance in the
presence of the data structures used in the TAME specifica-
tion, was used in the proofs of all subproperties and has
subsequently proven useful in other TAME applications.
Once the strategy was developed, the time required to
develop the proof scripts interactively in TAME was one day.
Adding and proving a new subproperty suggested by an
evaluator required under one hour. The proof script of each
subproperty executes in two minutes or less.

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 93

6.4 Showing Code Conformance

For one month, we experimented with several different
approaches for demonstrating conformance between the
TLS and the annotated C code before the approach
presented in Section 3.5 was selected. Once an approach
was selected, a total of about five weeks was required to
establish conformance. The formal foundation for the
correspondence argument required one week. Three weeks
were needed to construct the correspondence of Event Code
to TLS events, that is, developing the code-level assertions
necessary for the TLS preconditions and postconditions to
hold and locating the corresponding event code and asser-
tions in the annotated C code. One day was spent using the
Xcode tool to locate all calls to functions that can reset the
MMU and manually verifying that the permissions for the
Other Code did not include access to MAIs. One week was
needed to add the required assertions to the annotated code.
Our method for demonstrating code conformance in the ED
kernel relies on the notions of MAIs and Event Code. The
extent to which our method can be extended to other
applications depends on whether an analogous method of
identifying the Event Code (and the Trusted Code) can be
found. In addition, as noted in Section 5.1, in our method, the
properties to be proven must be preserved under refinement.
Both the EM class of applications and the applications that
enforce access control policies are likely to meet both
conditions.

7 OPEN PROBLEMS

7.1 Code Annotations

For many years, some researchers have recommended
annotating code with preconditions, postconditions, and
invariants (for example, see [35], [36]). Such code annota-
tions are already used in practice. For example, developers
at Praxis annotate SPARK programs with assertions and use
tools to automatically check the assertions [37]. Further-
more, in the largest Microsoft product groups, annotations
are a mandated part of the software development process
[38]. However, manual annotation of source code remains
rare in the wider software development industry because it
is highly labor intensive [39]. Although tools for checking
code annotations would be valuable, tools that can
construct preconditions and postconditions automatically
are even more valuable. Some promising initial research on
the automatic extraction of a specification from code has
been published (for example, see [40]). However, to date,
current research has mostly focused on extracting specifica-
tions to detect code vulnerabilities. Extracting assertions
from code for checking security properties such as access
privileges and other assertions, like those shown in Fig. 1,
has not been investigated.

7.2 Automatic Generation of Test Cases from
Assertions

Recently, many new techniques for specification-based
testing have been proposed. Such techniques (see, for
example, [41]) construct a set of test cases for checking a
software implementation against a formal requirements
specification. One promising new direction would be to
construct test cases from preconditions and postconditions
that annotate the source code and then use the test cases to
check that a given program (such as a program that

includes the annotated C code in Fig. 1) satisfies the
asserted preconditions and postconditions. Validating the C
code in this manner would provide high assurance of both
the security and functional correctness of the C code.
Reference [42] describes an approach that uses automatic
test case generation from preconditions and postconditions
to find bugs in Java code.

7.3 A Code Conformance Proof Assistant

The semantic distance between the abstract TLS required
for a Common Criteria evaluation and a low-level C
program is huge. Although the TLS describes the security-
relevant program behavior in terms of sets, functions, and
relations, the description of the behavior of a C program is
in terms of low-level constructs such as arrays, integers, and
bits stored in registers and memory areas. Hence, an
automatic demonstration of conformance of low-level C
code to a TLS is unrealistic. A more realistic goal is a proof
assistant with two inputs—a C program annotated with
assertions and a TLS of the security-relevant functions of
that program—for helping the user establish that the C
program satisfies the TLS.

7.4 Automatic Code Generation

One promising way of obtaining high assurance that an
implementation satisfies a set of critical security properties
is to generate code automatically from a specification that
has been proven to satisfy the properties. Automatic code
generation is already feasible for some low-level specifica-
tion languages such as Esterel [43]. Although constructing
efficient source code from more abstract specifications is
possible for simple program constructs using simple data
types (for example, see [44]), new research is needed to
produce efficient code from specifications containing richer
constructs and data types. Such technology should drasti-
cally reduce the effort required to produce efficient code
and to increase assurance that the code satisfies critical
security properties.

8 RELATED WORK

In the 1980s, the SCOMP [45], SeaView [46], LOCK [47], and
Multinet Gateway [48] projects all applied formal methods
to the specification and verification of systems. All devel-
oped TLSs and formal statements of the system security
policies. For SCOMP, Multinet Gateway, and LOCK, the
TLS was formally shown to satisfy the security policy. For
SeaView, only two of the 31 operations in the TLS were
verified against the security policy model [6]. Conformance
between the TLS and the SCOMP code was shown by
constructing several mappings: the English language to the
TLS, the TLS to pseudocode, and the TLS to actual code [5].
The mapping was top down from the TLS to the code. As a
result, some code was unmapped. This approach is similar to
our mapping of Event Code to the TLS, although the mapping
is in the other direction. The LOCK project constructed
mappings partially relating the TLS to the source code.
Specification-based testing provided additional evidence of
correspondence. In Multinet Gateway, verification condi-
tions were generated to show conformance between the
specification and the code. If and how these conditions were
discharged is unclear. Each project used tools to aid in
specification and verification: SCOMP used HDM [49],

94 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Seaview used EHDM [50], and Multinet Gateway and LOCK
used Gypsy [51]. More recently, in 2006, we formulated a
second possible approach to software verification based on
TAME, which uses verified formal pseudocode as “glue”
relating a TLS to actual code [52].

In [34], [53], Greve, Wilding, and Vanfleet (GWV) present

an ACL2 model for a generic separation kernel. In the

model, a function describes the possible information flows

between memory areas. This notion of flow is not as fine-

grained as our model, where access (with its possible

information flows) is granted to each process only when it

executes in a partition, thus providing least privilege in

addition to separation. In the GWV approach, separation

includes No-Exfiltration and No-Infiltration but not Tem-

poral Separation since the model does not allow reconfigur-

able partitions. How the GWV model was used to verify the

AAMP7 microprocessor is described in [54], [55]. A

traditional verification process was followed: Build a formal

security policy, both an abstract and a detailed model, and

an implementation, then prove that the abstract model

satisfies the security policy and show correspondence

between the abstract and detailed models and between

the detailed model and the implementation. Whether

correctness was proven at either the detailed design level

or the code level is unclear.

9 CONCLUSIONS

This paper has introduced a novel and affordable approach

for verifying security down to the source code level. The

approach begins with a well-defined security property,

builds the minimal state machine model needed to prove

that the model satisfies the property, and proves, using a

mechanical verifier, that the security model satisfies the

property. Once complete, the code is annotated with

preconditions and postconditions and is then partitioned

into Event, Trusted, and Other Code. The final step is to

1) demonstrate conformance of the Event Code and the

code preconditions and postconditions with the internal

events and preconditions and postconditions of the TLS and

2) show that the Trusted Code and the Other Code are

benign. Tools such as model checkers and theorem provers

are already available for verifying that a formal specifica-

tion satisfies a security property of interest. A research

challenge is to develop tools for the following:

1. validating and constructing preconditions and post-
conditions from the source code, including the
C code,

2. automatically generating test cases that check C code
annotations,

3. showing conformance of annotated code with a TLS,
and

4. automatically constructing efficient provably correct
code from specifications.

Research that addresses these four problems should

significantly increase the affordability of constructing

verified security-critical software.

APPENDIX A

ITERATING OUR REFINEMENT METHOD

Fig. 3 illustrates the mappings, predicates, and relationships

between assertions connected with the proof of successive

refinements from an automaton at level c through an

automaton at level b to an automaton at level a. We wish to

prove that if the analogs of conditions 1, 2, and 3 from

Section 4.1 hold for the c-to-b and b-to-a relations, then

conditions 1, 2, and 3 hold for the composed c-to-a relation

in which � ¼� �1 � �2 and � ¼� �2 � �1. In analogy with the

notation in Section 4, we use sb to denote �2ðscÞ, sa to denote

�1ðsbÞ, and Sa, Sb, and Sc to denote the sets of states at

levels a, b, and c. We first need a lemma.

Lemma A.1. Let � : Sc ! Sa and let � be the map from
predicates on Sa to predicates on Sc induced by �, that is, such
that, for any predicate Pa and any element sc 2 Sc,
�ðPaÞðscÞ ¼� Pað�ðscÞÞ. If Pa and Qa are predicates on Sa

such that Pa) Qa, then �ðPaÞ) �ðQaÞ.
Proof. Suppose that Pa and Qa are two predicates on Sa,

for which Pa) Qa. This means that, 8sa 2 Sa,
PaðsaÞ) QaðsaÞ. Let sc be any element of Sc. Then,

�ðPaÞðscÞ ¼ Pað�ðscÞÞ ðby the definition of �Þ
) Qað�ðscÞÞ ðsince Pa) QaÞ
¼ �ðQaÞðscÞ ðby the definition of �Þ:

ut

Next, we define the notion of an annotated transition.

Definition A.1. Let S be a set of states and let E � S � S be a
set of transitions on S. An annotated transition is a transition
e 2 E accompanied by a one-state predicate Pree on S and a
two-state predicate Poste on S.

Now, we can state the theorem formally:

Theorem A.2. Let A, B, and C be automata with state spaces Sb,

Sb, and Sc and sets of annotated transitions Ea, Eb, and Ec,

respectively. Let �2 : Sc ! Sb and Ec ! Eb and �1 : Sb !
Sa and Eb ! Ea be refinement mappings, that is, mappings

that, together with their induced mappings �2 and �1 on

predicates and the transition annotations, satisfy the

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 95

Fig. 3. Relationships in successive refinements.

appropriate analogs of conditions 1, 2, and 3 from

Section 4.1. For convenience, we refer to these conditions

as conditions 1b;c, 2b;c, and 3b;c and conditions 1a;b, 2a;b, and

3a;b. Then if � ¼� �1 � �2 and � ¼� �2 � �1, the mappings �

and � satisfy conditions 1, 2, and 3, and hence, � : Sc ! Sa,

and Eb ! Ea is a refinement mapping.

Proof. Suppose that the hypotheses of Theorem A.2 hold.

Then, we need to establish that conditions 1, 2, and 3 hold.
For condition 1, we can argue as follows:

(i) Preec
) �2ðPreeb

Þ (by condition 1b;c)
(ii) Preeb

) �1ðPreea
Þ (by condition 1a;b)

(iii) �2ðPreeb
Þ) �2ð�1ðPreea

ÞÞ (by (ii) and Lemma A.1)

and, therefore,

(iv) Preec
) �2ð�1ðPreea

ÞÞ (by (i) and (iii))
(v) Preec

) �ðPreea
Þ (by the definition of �)

For condition 2, first note that the first part of

condition 2, which relates Preec
to Postec

, follows from

the first part of condition 2b;c. The remainder of the

argument, which relates Postec
to Postea

, is totally

analogous to that for condition 1.

To prove condition 3, we note that if Preec
ðscÞ holds,

then by condition 3b;c, the lower square in Fig. 3

commutes. Furthermore, we have

Preec
ðscÞ

) �2ðPreeb
ÞðscÞ ðby condition 1b;cÞ

 Preeb
ðsbÞ ðby definition of �2; since sc ¼ �2ðsbÞÞ

and hence Preeb
ðsbÞ holds. By condition 3a;b, this implies

that the upper square commutes. Therefore, the diagram

as a whole commutes and we have

ea � �1 � �2 ¼ �1 � �2 � ec:

By the definition of �, this means that

ea � � ¼ � � ec;

and we are done. tu

APPENDIX B

TAME REPRESENTATION OF SEPARATION

To provide some details of the TAME representation of ED,

we show how three of the five subproperties of the

separation property verified for ED, Temporal Separation,

No-Exfiltration, and No-Infiltration, are represented in

TAME. For each subproperty, we first repeat its natural

language representation from Section 3.2 and then show

and explain its TAME representation.

B.1 Temporal Separation

Natural language version

(Temporal Separation) For all states s in S, for all i, 1 � i � n,
if the partition id cs is 0, then the k data areas of partition i
are clear, that is, D1

i;s ¼ 0; . . . ; Dk
i;s ¼ 0.

TAME version

The TAME representation of the Temporal Separation
property is the state-invariant lemma lemma ClearPart,
which states that the invariant Inv ClearPart holds for
every reachable state s. In the invariant Inv ClearPart,
PartIndex and DataAreaIndex are the types of partition
indices and data area indices, defined simply to be
nonempty, uninterpreted types. Thus, there can be an
arbitrary nonzero number of partitions, each with the same
but arbitrary nonzero number of data areas. PartIdðsÞ
represents cs, the current partition id in the current state.
NONE?ðPartIdðsÞÞ is true when cs is 0, that is, exactly when
no partition processing is taking place. MemContent is a
function that maps a memory area and a state to the
memory content of that memory area in that state. Finally,
the predicate Clear? is true of the memory content of a data
area when that data area is clear.

B.2 No-Exfiltration

Natural language version

(No-Exfiltration) Suppose that states s and s0 are in state set S,
event e is in H, memory area a is inM, and j is a partition,
1 � j � n. Suppose further that s0 ¼ T ðe; sÞ. If e is an event in
Pj [EIn

j [EOut
j and as 6¼ as0 , then a is in Aj.

TAME version

The TAME version No Exfiltration of the No-Exfiltration
property corresponds to the contrapositive of the natural
language version. In the TAME representation, the event e is
represented by an action E. The state s is represented by s

and the state s0 is represented by transðE; sÞ, that is, the
result of a transition due to action E in state s. For the current
partition id PartIdðsÞ in state s, either NONE? holds, that is,
no partition processing is occurring, or Part? holds, in
which case, partition processing is occurring in partition
idðPartIdðsÞÞ. The assertion enabledðE; sÞ means that the
precondition of action E holds in state s. When E is an
internal action, this precondition ensures that E is an
internal action for Partition PartIdðsÞ. The condition
InBuff?ðEÞ&InBuff IndexðEÞ ¼ j is true when E fills the
input buffer of Partition j. The analogous condition with
Out in place of In is true when E empties the output
buffer of Partition j. These parts of the conclusion of
property No Exfiltration cover the cases when action E

is an external event for Partition j. Thus, property

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

No Exfiltration says that, if m is a memory area in
Partition j and E either is an external action or is an
internal action in some partition other than Partition j, then
either E is an external action for Partition j or E does not
change the content of m.

B.3 No-Infiltration

Natural language version

(No-Infiltration) Suppose that states s1, s2, s01, and s02 are in S,
event e is in H, and i is a partition, 1 � i � n. Suppose
further that s01 ¼ T ðe; s1Þ and s02 ¼ T ðe; s2Þ. If, for all a in Ai,
as1
¼ as2

, then, for all a in Ai, as01 ¼ as02 .

TAME version

The preceding explanation of the notation in
lemma ClearPart and No Exfiltration should make it
clear that the TAME version No Infiltration of the No-
Infiltration Property is equivalent to the natural language
version.

ACKNOWLEDGMENTS

The authors acknowledge Gerard Allwein of NRL for
telling them about the Xcode tool. They also acknowledge
the monumental effort of the logician who annotated the
kernel code with preconditions and postconditions and of
the ED project leader, who had the foresight to include a
separation kernel and keep the design simple. Without the
annotated code and solid design decisions, the authors
would have been unable to obtain the results described in
this paper. The authors also thank the members of the ED
design team for answering questions about ED’s opera-
tional behavior. This research was supported by the US
Office of Naval Research. This paper is an extended version
of a paper presented at the 13th ACM Conference on
Computer and Communications Security (CCS ’06) held in
Alexandria, Virginia, 30 October-3 November 2006 [56].

REFERENCES

[1] J.S. Moore, T.W. Lynch, and M. Kaufmann, “A Mechanically
Checked Proof of the AMD5K86TM Floating-Point Division
Program,” IEEE Trans. Computers, vol. 47, no. 9, Sept. 1998.

[2] J. Rushby, “A Formally Verified Algorithm for Clock Synchroni-
zation under a Hybrid Fault Model,” Proc. 13th ACM Symp.
Principles of Distributed Computing, Aug. 1994.

[3] C. Meadows, “Analysis of the Internet Key Exchange Protocol
Using the NRL Protocol Analyzer,” Proc. IEEE Symp. Security and
Privacy, 1999.

[4] J. Juerjens, “Sound Methods and Effective Tools for Model-Based
Security Engineering with UML,” Proc. 27th Int’l Conf. Software
Eng., 2005.

[5] T. Benzel, “Analysis of a Kernel Verification,” Proc. IEEE Symp.
Security and Privacy, Apr. 1984.

[6] R. Whitehurst and T. Lunt, “The SeaView Verification,” Proc.
Second IEEE Computer Security Foundations Workshop, June 1989.

[7] J. Rushby, “Design and Verification of Secure Systems,” Proc.
Eighth ACM Symp. Operating System Principles, Dec. 1981.

[8] B. Lampson, “Protection,” Proc. Fifth Princeton Conf. Information
Sciences and Systems, Mar. 1991.

[9] N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert,
“PVS Prover Guide Version 2.4,” technical report, Computer
Science Laboratory, SRI Int’l, Nov. 2001.

[10] M. Abadi and L. Lamport, “The Existence of Refinement
Mappings,” Theoretical Computer Science, vol. 82, no. 2, pp. 253-
284, 1991.

[11] C. Adams, “Keeping Secrets in Integrated Avionics,” Aviation
Today, 2004.

[12] J. Anderson, “Computer Security Technology Planning Study,”
Technical Report ESD-TR-73-51, Hanscom AFB, ESD/AFSC, 1972.

[13] “Common Criteria for Information Technology Security Evalua-
tion,”Parts 1-3: Technical Reports CCIMB-2004-01-001 through
CCIMB-2004-01-003, Version 2.2, Revision 256, Jan. 2004.

[14] C.E. Landwehr, C.L. Heitmeyer, and J.D. McLean, “A Security
Model for Military Message Systems,” ACM Trans. Computer
Systems, vol. 2, no. 3, pp. 198-222, 1984.

[15] J. McLean, C. Landwehr, and C. Heitmeyer, “A Formal Statement
of the Military Message System Security Model,” Proc. IEEE Symp.
Security and Privacy, pp. 188-194, 1984.

[16] M. Archer, “TAME: Using PVS Strategies for Special-Purpose
Theorem Proving,” Annals of Math. and Artificial Intelligence,
vol. 29, nos. 1-4, pp. 139-181, 2000.

[17] M. Archer, C.L. Heitmeyer, and E. Riccobene, “Proving Invariants
of I/O Automata with TAME,” Automated Software Eng., vol. 9,
no. 3, pp. 201-232, 2002.

[18] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal
Verification for Fault-Tolerant Architectures: Prolegomena to the
Design of PVS,” IEEE Trans. Software Eng., vol. 21, no. 2, pp. 107-
125, Feb. 1995.

[19] Xcode Version 2.1, http://developer.apple.com/tools/xcode/
index.html, 2007.

[20] E.M. Clarke, O. Grumberg, and D.E. Long, “Model Checking and
Abstraction,” Proc. 21st ACM Symp. Principles of Programming
Language, 1994.

[21] K.L. McMillan, “Verification of Infinite State Systems by Compo-
sitional Model Checking,” Proc. 10th IFIP WG 10.5 Advanced
Research Working Conf. Correct Hardware Design and Verification
Methods, 1999.

[22] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter-
example-Guided Abstraction Refinement,” Proc. 12th Int’l Conf.
Computer-Aided Verification, 2000.

[23] J.R. Burch and D.L. Dill, “Automatic Verification of Pipelined
Microprocessors Control,” Proc. Sixth Int’l Conf. Computer-Aided
Verification, vol. 818, pp. 68-80, 1994.

[24] D. Cyrluk, “Microprocessor Verification in PVS: A Methodology
and Simple Example,” Technical Report SRI-CSL-93-12, 1993.

[25] L. Robinson and K.N. Levitt, “Proof Techniques for Hierarchically
Structured Programs,” Comm. ACM, vol. 20, no. 4, pp. 271-283,
1977.

[26] B. Alpern and F.B. Schneider, “Defining Liveness,” Information
Processing Letters, vol. 21, no. 4, pp. 181-185, 1985.

[27] L. Lamport, “Proving the Correctness of Multiprocess Programs,”
IEEE Trans. Software Eng., vol. 3, no. 2, pp. 125-143, 1977.

[28] J. McLean, “A General Theory of Composition for Trace Sets
Closed under Selective Interleaving Functions,” Proc. IEEE Symp.
Research in Security and Privacy ’94, pp. 79-93, May 1994.

[29] J.A. Goguen and J. Meseguer, “Security Policies and Security
Models,” Proc. IEEE Symp. Research in Security and Privacy ’92,
pp. 11-20, May 1992.

[30] J. McLean, “Security Models,” Encyclopedia of Software Eng.,
J. Marciniak, ed., John Wiley & Sons, 1994.

[31] F.B. Schneider, “Enforceable Security Policies,” ACM Trans.
Information and System Security, vol. 3, no. 1, pp. 30-50, 2000.

[32] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Automated
Consistency Checking of Requirements Specifications,” ACM
Trans. Software Eng. and Methodology, vol. 5, no. 3, pp. 231-261,
1996.

[33] C.L. Heitmeyer, M. Archer, R. Bharadwaj, and R.D. Jeffords,
“Tools for Constructing Requirements Specifications: The SCR
Toolset at the Age of Ten,” Computer Systems: Science and Eng.,
vol. 20, no. 1, 2005.

HEITMEYER ET AL.: APPLYING FORMAL METHODS TO A CERTIFIABLY SECURE SOFTWARE SYSTEM 97

[34] D. Greve, M. Wilding, and W.M. Vanfleet, “A Separation Kernel
Formal Security Policy,” Proc. Fourth Int’l Workshop ACL2 Prover
and Its Applications, July 2003.

[35] B. Meyer, “Applying ’Design by Contract’,” Computer, vol. 25,
no. 10, pp. 40-51, Oct. 1992.

[36] M. Chechik and J.D. Gannon, “Automatic Analysis of Consistency
between Requirements and Designs,” IEEE Trans. Software Eng.,
vol. 27, no. 7, pp. 651-672, 2001.

[37] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

[38] M. Das, “Formal Specifications on Industrial-Strength Code: From
Myth to Reality,” Proc. 18th Int’l Conf. Computer-Aided Verification,
Aug. 2006.

[39] S. Hallem, B. Chelf, Y. Xie, and D.R. Engler, “A System and
Language for Building System-Specific, Static Analyses,” Proc.
ACM Conf. Programming Language Design and Implementation,
pp. 69-82, 2002.

[40] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler, “From
Uncertainty to Belief: Inferring the Specification Within,” Proc.
Seventh Symp. Operating Systems Design and Implementation, Dec.
2006.

[41] A. Gargantini and C.L. Heitmeyer, “Using Model Checking to
Generate Tests from Requirements Specifications,” Proc. Seventh
European Software Eng. Conf. and Seventh ACM Symp. Foundations of
Software Eng., 1999.

[42] Y. Smaragdakis and C. Csallner, “Combining Static and Dynamic
Reasoning for Bug Detection,” Proc. First Int’l Conf. Tests and
Proofs, pp. 1-16, 2007.

[43] SCADE Tool Suite, http://www.esterel-technologies.com/
products/scade-suite, 2007.

[44] T. Rothamel, C. Heitmeyer, E. Leonard, and Y.A. Liu, “Generating
Optimized Code from SCR Specifications,” Proc. ACM Conf.
Languages, Compilers and Tools for Embedded Systems, June 2006.

[45] L. Fraim, “Secure Office Management System: The First Com-
modity Application on a Trusted System,” Proc. Fall Joint Computer
Conf. Exploring Technology: Today and Tomorrow, 1987.

[46] T. Lunt, D. Denning, R. Schell, M. Heckman, and W. Shockley,
“The SeaView Security Model,” IEEE Trans. Software Eng., vol. 16,
no. 6, pp. 593-607, June 1990.

[47] R. Smith, “Cost Profile of a Highly Assured Secure Operating
System,” ACM Trans. Information and System Security, vol. 4, no. 1,
Feb. 2001.

[48] S. Gerhart, D. Craigen, and T. Ralston, “Case Study: Multinet
Gateway System,” IEEE Software, pp. 37-39, 1994.

[49] L. Robinson, “The HDM Handbook, Vol. 1: The Foundations of
HDM,” SRI Project 4828, technical report, SRI Int’l, 1979.

[50] J. Rushby, F. von Henke, and S. Owre, “An Introduction to Formal
Specification and Verification Using EHDM,” Technical Report
CSL-91-2, SRI Int’l, Feb. 1991.

[51] D. Good, “Mechanical Proofs about Computer Programs,” Math.
Logic and Programming Languages, C. Hoare and J. Shepherdson,
eds., pp. 55-75, Prentice Hall, 1985.

[52] M. Archer and E. Leonard, “Establishing High Confidence in
Code Implementations of Algorithms Using Formal Verification
of Pseudo-Code,” Proc. Third Int’l Verification Workshop, 2006.

[53] J. Alves-Foss and C. Taylor, “An Analysis of the GWV Security
Policy,” Proc. Fifth Int’l Workshop ACL2 Prover and Its Applications,
2004.

[54] D. Greve, R. Richards, and M. Wilding, “A Summary of Intrinsic
Partitioning Verification,” Proc. Fifth Int’l Workshop ACL2 Prover
and Its Applications, 2004.

[55] R. Richards, D. Greve, M. Wilding, and W. Vanfleet, “The
Common Criteria, Formal Methods and ACL2,” Proc. Fifth Int’l
Workshop ACL2 Prover and Its Applications, 2004.

[56] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean, “Formal
Specification and Verification of Data Separation in a Separation
Kernel for an Embedded System,” Proc. 13th ACM Conf. Computer
and Comm. Security, Oct.-Nov. 2006.

Constance L. Heitmeyer heads the Software
Engineering Section of the Naval Research
Laboratory’s Center for High Assurance Com-
puter Systems. She is the chief designer of the
Software Cost Reduction (SCR) toolset for
formally specifying and analyzing requirements.
Her research interests include software require-
ments, formal methods, real-time computing,
and formal models for computer security. She
was the program chair of the Third and Fourth

ACM/IEEE Conference on Formal Methods and Models for Codesign
(MEMOCODE 2005 and 2006). She has been a member of the editorial
boards of the ACM Transactions on Software Engineering and
Methodology, Software and Systems Engineering, Innovations in
Systems and Software Engineering, and Real-Time Systems. She is
also the formal methods subject area editor of Requirements Engineer-
ing. She is the author of more than 100 papers. Her papers can be found
at http://chacs.nrl.navy.mil/personnel/heitmeyer.html. She is a member
of the IEEE, the IEEE Computer Society, and the ACM.

Myla M. Archer received the AM degree in
mathematics from Harvard University and the
PhD degree in computer science from the
University of Illinois at Urbana-Champaign. She
has been a research computer scientist in the
Software Engineering Section of the Naval
Research Laboratory’s (NRL’s) Center for High
Assurance Computer Systems since 1995. Prior
to joining the NRL, she taught mathematics at
Wheaton College, Norton, Massachusetts, and

served on the Computer Science Faculty at the University of California,
Davis. She was the general chair of the 1991 Tutorial and Workshop on
the HOL Theorem Proving System and Its Applications, the doctoral
consortium chair of the Third IEEE Symposium on Requirements
Engineering (ISRE ’97), and a coorganizer of the First International
Workshop on Design and Application of Strategies/Tactics in Higher
Order Logic (STRATA ’03) and the Sixth International Workshop on
Strategies in Automated Deduction (STRATEGIES ’06). Her research
interests include formal methods, verification, requirements, and
strategies in automated deduction. She is a member of the IEEE
Computer Society and the ACM.

Elizabeth I. Leonard received the MSE and
PhD degrees in computer science from the
Johns Hopkins University. She is a research
computer scientist in the Software Engineering
Section of the Naval Research Laboratory’s
(NRL’s) Center for High Assurance Computer
Systems. Prior to joining the NRL, she held a
fellowship at the Space Telescope Science
Institute and served as a research intern at the
US Air Force Rome Laboratory. She served on

the program committee and as the publications chair of the Third,
Fourth, and Fifth ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE ’05, MEMOCODE
’06, and MEMOCODE ’07). Her research interests include formal
methods, security policy analysis, security modeling, automatic code
generation, and verification. She is a member of the IEEE Computer
Society and the ACM.

John D. McLean is the superintendent of the
Information Technology Division at the Naval
Research Laboratory (NRL), where he was the
director of the Division’s Center for High
Assurance Computer Systems and the senior
scientist for Information Assurance. While with
NRL, he has been a senior research fellow at the
University of Cambridge’s Centre for Commu-
nications Systems Research and an adjunct
professor of computer science at the University

of Maryland, the National Cryptologic School, and Troiseme Cycle
Romand d’Informatique. He was an associate editor for Distributed
Computing, the Journal of Computer Security, the ACM Transactions on
Information and System Security, and the International Journal of
Information and Computer Security. His research interests include
formal methods and formal models for computer security.

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

